Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Natural Products Journal ; 13(1):1.0, 2023.
Article in English | Scopus | ID: covidwho-2246401
2.
Natural Products Journal ; 13(1):1, 2023.
Article in English | EMBASE | ID: covidwho-2197767
3.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911631

ABSTRACT

In the present work we studied the antiviral activity of the home library of monoterpenoid derivatives using the pseudoviral systems of our development, which have glycoproteins of the SARS-CoV-2 virus strains Wuhan and Delta on their surface. We found that borneol derivatives with a tertiary nitrogen atom can exhibit activity at the early stages of viral replication. In order to search for potential binding sites of ligands with glycoprotein, we carried out additional biological tests to study the inhibition of the re-receptor-binding domain of protein S. For the compounds that showed activity on the pseudoviral system, a study using three strains of the infectious SARS-CoV-2 virus was carried out. As a result, two leader compounds were found that showed activity on the Wuhan, Delta, and Omicron strains. Based on the biological results, we searched for the potential binding site of the leader compounds using molecular dynamics and molecular docking methods. We suggested that the compounds can bind in conserved regions of the central helices and/or heptad repeats of glycoprotein S of SARS-CoV-2 viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Camphanes , Esters , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL